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1. Research Aim

The release of hazardous material into the atmosphere is a major threat to public
safety. The fast and accurate retrieval of source information, e.g., location and strength, 
is a crucial technique to allow emergency preparedness efforts to make appropriate 
responses and to reduce further impairment. This identification of unknown sources is a 
typical source term estimation (STE) problem, which addresses the retrieval of emission 
source information, including location and strength, based on available information. STE 
can be viewed as an assimilation process of the observed concentration data measured 
by a sensor network and the predicted concentration data provided by a dispersion model. 
When considering emissions in complex urban areas, computational fluid dynamics 
(CFD) approaches are generally used to provide building-resolving results; however, the 
value of a key parameter, the turbulent Schmidt number 𝑆𝑆𝑆𝑆𝑡𝑡, has remained an arbitrary 
choice. Therefore, it is important to investigate the role of 𝑆𝑆𝑆𝑆𝑡𝑡 in STE problems and 
determine its optimum value for the purpose of obtaining better estimation results. In 
this study, the impact of 𝑆𝑆𝑆𝑆𝑡𝑡 on STE problems is examined, and Bayesian inference is 
used to improve estimation accuracy by treating 𝑆𝑆𝑆𝑆𝑡𝑡 as an extra unknown parameter. 

2. Research Method

2.1 Introduction of STE and turbulent Schmidt number
STE is a process for assimilating observed concentration data measured by a sensor 

network and predicted concentration data calculated by an atmospheric dispersion 
model. This process, however, is usually faced with several challenges, for example, (i) 
the sensors are sparsely distributed in space and are mostly heavily outnumbered by 
possible source locations, which can produce multiple release scenarios that match the 
same observations; (ii) the observations contain errors due to sensor noise and 
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information loss introduced by the potential averaging process; and (iii) the predicted 
concentration data contain errors due to the uncertainty in the dispersion models. 
Overall, the STE problem is viewed as an ill-posed inverse problem that is characterized 
by its non-uniqueness and unstable solutions. 

To make the STE problem more tractable, multiple methods have been developed 
using various approaches, as described in the state-of-the-art reviews of Singh et al. 
(2015) and Hutchinson et al. (2017). One intuitive solution is to directly inverse the 
transport process. Another more general alternative is the optimization method of 
minimizing a cost function, which quantifies the discrepancy between observed and 
predicted concentrations. The third approach, Bayesian inference considers the problem 
of STE in a probabilistic logical manner. All parameters are regarded as random 
variables, rather than as constants, with certain probability distributions. Bayesian 
inference provides not only the point estimations of unknown parameters but also their 
probability distributions, thus providing a more natural method of uncertainty 
estimation. Besides, Bayesian inference is also known for its flexibility in handling extra 
unknowns, and is thus used in this study. 

The STE problem, as mentioned earlier, is an ill-posed inverse problem. Poor model 
predictions of concentrations often cause heavy deviations in estimated values. The 
accuracy of the dispersion model is crucial. When dealing with urban dispersion, 
computational fluid dynamics (CFD) modeling is often employed to reproduce realistic 
flow and pollutant transport in built-up areas. 

In the vast majority of STE investigations performed using CFD, the Reynolds-
averaging approach is employed to model turbulent flow and turbulent passive scalar 
transport, assuming the gradient diffusion hypothesis in order to close the turbulent 
scalar-flux term −𝑢𝑢′𝑐𝑐′�����, as follows 
 −𝑢𝑢′𝑐𝑐′����� = 𝐷𝐷𝑡𝑡∇𝑐𝑐 (1) 

where 𝐷𝐷𝑡𝑡 is the turbulent mass diffusivity and ∇𝑐𝑐 is the mean mass gradient. Combest 
et al. (2011) published a comprehensive review of the above content. By far, the simplest 
and most popular way to account for 𝐷𝐷𝑡𝑡 is to assume that there is a similarity between 
turbulent mass diffusivity and turbulent momentum diffusivity (i.e., eddy viscosity 𝜈𝜈𝑡𝑡) 
by assigning a global turbulent Schmidt number  
 𝑆𝑆𝑆𝑆𝑡𝑡 = 𝜈𝜈𝑡𝑡/𝐷𝐷𝑡𝑡 (2) 
𝑆𝑆𝑆𝑆𝑡𝑡 plays an important role in scalar transport modeling, as its specific value has a 
significant impact on the accuracy of predictions. Tominaga and Stathopoulos (2007) 
reviewed relevant investigations performed over the past several decades and concluded 
that the optimum 𝑆𝑆𝑆𝑆𝑡𝑡 value is problem dependent and should be selected carefully. In 
STE studies, despite the fact that it may cause deviations in dispersion model predictions 
and consequently lead to biased estimations, the influence of 𝑆𝑆𝑆𝑆𝑡𝑡  has been rarely 



addressed. In addition, to date, the selection of 𝑆𝑆𝑆𝑆𝑡𝑡 has been quite arbitrary; surprisingly, 
in several papers, the value of 𝑆𝑆𝑆𝑆𝑡𝑡 is not even reported.  

Therefore, it is important to investigate the role of 𝑆𝑆𝑆𝑆𝑡𝑡 in STE problems and the 
determination of its optimum value in order to obtain better estimation results. In this 
study the impact of 𝑆𝑆𝑆𝑆𝑡𝑡  in STE problems is examined, and the possibility of using 
Bayesian inference to improve the estimation of the source location and strength by 
treating 𝑆𝑆𝑆𝑆𝑡𝑡 as an extra unknown parameter is explored. 
 
2.2 Bayesian inference 

Bayesian inference was first applied to atmospheric STE problems Keats et al. (2007), 
who provided the fundamentals of the method. In this paper, based on their work, the 
influence of 𝑆𝑆𝑆𝑆𝑡𝑡 is taken into consideration in the Bayesian framework. 

Bayesian inference addresses parameter estimation problems in a probabilistic way. 
Assume that we are interested in estimating a parameter set, θ, which may include 
source location, strength, or other unknown quantities, given the measurement 
information, μ, obtained from a network of sensors. Bayesian theory provides a rigorous 
way to make an inference based on all of the information given in this problem. More 
specifically, the estimation result is obtained as the posterior probability, which is given 
by Bayes’ theorem as 
 

𝑝𝑝(𝜽𝜽|𝝁𝝁) =
𝑝𝑝(𝝁𝝁|𝜽𝜽)𝑝𝑝(𝜽𝜽)

𝑝𝑝(𝝁𝝁) ∝ 𝑝𝑝(𝝁𝝁|𝜽𝜽)𝑝𝑝(𝜽𝜽) (3) 

where the terms embodied can be interpreted as follows. 𝑝𝑝(𝝁𝝁|𝜽𝜽) is the likelihood 
function, which can be interpreted as the probability that we observe the measurement 
data μ given the parameter set θ. 𝑝𝑝(𝜽𝜽) is the prior probability, encoding all a priori 
information about the unknown parameters known before the measurement. 𝑝𝑝(𝝁𝝁) is the 
evidence, acting as a normalizing constant in order to obtain the posterior distribution. 
𝑝𝑝(𝜽𝜽|𝝁𝝁), which is the posterior probability, is the quantity of interest in the STE problems 
and encapsulates all of the relevant information required for the inference.  

To calculate 𝑝𝑝(𝜽𝜽|𝝁𝝁)  requires assigning the appropriate function forms for the 
likelihood function 𝑝𝑝(𝝁𝝁|𝜽𝜽) and the prior probability 𝑝𝑝(𝜽𝜽). In this study, we consider the 
STE problem of a single point source releasing with a constant strength and an 
undefined 𝑆𝑆𝑆𝑆𝑡𝑡, represented by 𝜽𝜽 = (𝒙𝒙𝒔𝒔,𝑞𝑞, 𝑆𝑆𝑐𝑐𝑡𝑡) where 𝒙𝒙𝒔𝒔 is the source location and q is 
the source strength. We use the simplest and probably most frequently used form of the 
likelihood function, Gaussian distribution. Uniform prior, Jeffreys prior, and binomial 
prior are assigned to the source location 𝒙𝒙𝒔𝒔, the source strength q, and the turbulent 
Schmidt number 𝑆𝑆𝑆𝑆𝑡𝑡, respectively. 
 
2.3 Markov chain Monte Carlo 



By substituting the above likelihood function and prior distributions into Eq. (3), the 
posterior distribution 𝑝𝑝(𝜽𝜽|𝝁𝝁) can be expressed explicitly. Although this distribution can 
be directly calculated by numerical integration, it represents a huge computational load 
due to its multidimensional parameter space. To efficiently obtain 𝑝𝑝(𝜽𝜽|𝝁𝝁) , various 
MCMC methods have been widely applied to Bayesian inference (Andrieu et al., 2003; 
Brémaud, 2013), generating a set of sampling points with the desired distribution as its 
stable distribution. Here, the hybrid of the Gibbs sampler and Metropolis-Hastings 
algorithm is used. 
 
2.4 Source-receptor relationship 

The source-receptor relationship is the sensitivity of the concentration at each sensor 
to a given source location and 𝑆𝑆𝑆𝑆𝑡𝑡 . This relationship, which contains all of the 
information of the dispersion model, is obtained by a CFD model. In this study an open 
source software program (OpenFOAM 2.2.1) is utilized to perform three-dimensional 
steady-state isothermal flow simulations to reproduce the airflow in complex urban 
structures. COST Action 732 (Franke and Baklanov, 2007) is applied as the guidelines 
for CFD settings. The Reynolds-averaged Navier-Stokes (RANS) equations are solved 
using the standard k-ε turbulence model, which models the eddy viscosity 𝜈𝜈𝑡𝑡 = 𝐶𝐶𝜇𝜇𝑘𝑘2/𝜀𝜀, 
where 𝐶𝐶𝜇𝜇 = 0.09 is a model constant, k is the turbulent kinetic energy, and ε is the 
dissipation rate. The second-order TVD discretization scheme is applied to all governing 
equations, which are solved using the semi-implicit method for pressure-linked 
equations (SIMPLE) algorithm. 

 

3. Research Result 

3.1 Case description 
To validate the proposed method, we consider a 3-dimensional dispersion scenario 

with a ground-level source, here, 𝒙𝒙𝒔𝒔 = (𝑥𝑥,𝑦𝑦), using a wind tunnel dispersion experiment 
conducted by the authors at Tokyo Polytechnic University. An open-circuit wind tunnel 
with a test section 1.2 m wide, 1.0 m high and 14 m long was used to measure the 
concentration distributions of a continuous point tracer release scenario in an urban-like 
geometry. As shown in Fig. 1, a 3×3 array of an urban mock-up was formed by cubic 
blocks and intervals equal to the block height (H=0.09 m). The source was located 
leeward of the first row with wind approaching perpendicularly. The mean 
concentrations measured at the 16 centers of the intervals are used to form the 
measurement data 𝝁𝝁. The region shown in Fig. 1 is selected as the possible source area. 

The wind tunnel reproduced the wind profile of an urban area. The profiles of 
horizontal velocity and turbulent kinetic energy were measured to fit the inlet boundary 
conditions in the CFD simulation. A tracer gas of pure C2H4 (ethylene) was released 



from a hole (with a diameter of 3 mm) at a flow rate of q=1.67×10-6 m3/s=1.667 mL/s. 
The concentration measurements were performed by using a fast flame ionization 
detector (fFID) at a sampling frequency of 150 Hz to provide time-averaged 
concentrations over a sampling period of 120 s. 

 
Fig. 1. Block array, source and sample point configuration. Note that the coordinates are normalized by 

the height of the blocks (H). The gray squares represent cubic building models. The ground level source 

is denoted by the red square. The 16 blue dots depict sensors located at a height of 0.5H. The arrows 

indicate the inflow direction of 90°. The shown region is used as the possible source area. 

 
3.2 The impact of 𝑆𝑆𝑆𝑆𝑡𝑡 on estimation results 

To clarify the role of 𝑆𝑆𝑐𝑐𝑡𝑡 in STE problems, the source parameters are first estimated 
using the conventional Bayesian inference approach, which uses a pre-assigned 𝑆𝑆𝑐𝑐𝑡𝑡 
value. Different 𝑆𝑆𝑐𝑐𝑡𝑡 values, ranging from 0.2 to 1.3, are then assigned to determine the 
impact of 𝑆𝑆𝑐𝑐𝑡𝑡 on estimation results. Time-averaged concentrations are used to form the 
measurement vector μ. The standard deviations of noise 𝜎𝜎𝑖𝑖 are given by the standard 
deviations of measurements at corresponding sensors.  

The estimation results obtained with different 𝑆𝑆𝑐𝑐𝑡𝑡 values are summarized in Fig. 2. 
High accuracy can be observed in all estimations of the x coordinates. There is barely 
any difference within each trial with respect to the posterior mean x coordinate, as all 
estimated values match the true value. Although larger uncertainties are obtained with 
increasing 𝑆𝑆𝑐𝑐𝑡𝑡, the 50% credible intervals maintain accuracy on a rather small scale 
(under 0.2H, less than 3 grids). This high accuracy is the result of the symmetric layout. 
With symmetric concentration measurements, it is easy to determine that the source is 
located on the centerline. 



 
Fig. 2. Estimation results of source parameters (x/H, normalized x-coordinate, y/H, normalized y-

coordinate, and q (mL/s), emission strength) with different 𝑆𝑆𝑐𝑐𝑡𝑡  values. Points denote the point 

estimations, i.e., posterior mean values, with whiskers representing the 50% credible intervals. True 

values are indicated by dashed lines.  

For y coordinates, it should be noted that, although the 50% credible interval tends 
to increase with increasing 𝑆𝑆𝑐𝑐𝑡𝑡, it always remains within the range of 1H to 2H, which 
represents the wake region between the first and second rows of blocks due to the rapid 
mixing of tracer gas by the vortices in the wake region and the fact that only one sensor 
is installed inside. Thus, this estimation indicates that the source is located somewhere 
between the two blocks; however, it is difficult to make a more accurate estimation. In 
terms of posterior mean values, fairly close estimations (within 0.04H) are obtained 
when using 𝑆𝑆𝑐𝑐𝑡𝑡 values of less than 0.6. However, with 𝑆𝑆𝑐𝑐𝑡𝑡 values that are greater than 
0.6, the estimated location strays upwind with increasing 𝑆𝑆𝑐𝑐𝑡𝑡  because when 𝑆𝑆𝑐𝑐𝑡𝑡 
increases, the turbulent diffusivity (𝐷𝐷𝑡𝑡 = 𝜈𝜈𝑡𝑡/𝑆𝑆𝑆𝑆𝑡𝑡) decreases, leading to a narrower plume 
compared with that in the real scenario. Therefore, to compensate for the 
underestimated diffusivity, the estimated location tends to move upwind, resulting in a 
wider plume. In addition, it is worth noting that the vortex still dominates, thus, despite 
the fact that the estimation shifts towards the upwind direction, it will not exceed the 
wake region. 

In terms of emission strength q, the value of 𝑆𝑆𝑐𝑐𝑡𝑡 has a considerable impact. Within 
the investigated 𝑆𝑆𝑐𝑐𝑡𝑡 range (0.2-1.3), the estimated strength varies by more than a factor 



of two. With increasing 𝑆𝑆𝑐𝑐𝑡𝑡 , the posterior mean strength decreases, while the 
uncertainty remains at a similar scale due to the influence of 𝑆𝑆𝑐𝑐𝑡𝑡 on turbulent diffusivity. 
Smaller 𝑆𝑆𝑐𝑐𝑡𝑡 values lead to the overestimation of turbulent diffusion, thus causing the 
plume to be more dispersed and resulting in smaller predicted concentrations at the 
sensor locations compared to their true values. Therefore, with smaller 𝑆𝑆𝑐𝑐𝑡𝑡 values, the 
Bayesian inference produces larger estimations of emission strength to obtain matching 
concentrations with respect to measured values, and vice-versa.  

Overall, by comparing the estimation results with the dashed lines, i.e., the true 
source parameters, it is clear that 𝑆𝑆𝑐𝑐𝑡𝑡 = 0.5 provides the best estimation. In other words, 
if we assign a value of 𝑆𝑆𝑐𝑐𝑡𝑡 = 0.5 when running the Bayesian inference, we can obtain a 
highly accurate estimation. Unfortunately, it is impossible to select this optimum 𝑆𝑆𝑐𝑐𝑡𝑡 
simply by looking at the estimation results unless the 𝑆𝑆𝑐𝑐𝑡𝑡 is optimized according to the 
true source parameters, which are exactly the unknown values that are being estimated 
in an STE problem. This predicament leads to the arbitrary choice of 𝑆𝑆𝑐𝑐𝑡𝑡, resulting in 
possible deviations in estimations. In order to remedy this, the Bayesian inference is 
further explored to address this difficulty in the next section. 
 
3.3 Estimation by treating 𝑆𝑆𝑐𝑐𝑡𝑡 as an unknown parameter 

The conventional approach used to determine the optimum 𝑆𝑆𝑐𝑐𝑡𝑡 value is to compare 
measured and predicted concentrations based on given source information (Combest et 
al., 2011; Tominaga and Stathopoulos, 2007). This process bears a close resemblance to 
the STE method, which simply contains more unknowns (i.e., source parameters). 
Luckily, Bayesian inference provides a powerful tool to cope with the estimations of 
multiple parameters.  

Assuming that 𝑆𝑆𝑐𝑐𝑡𝑡, source location and strength are all unknowns, the parameter 
estimation is performed. The posterior mean of 𝑆𝑆𝑐𝑐𝑡𝑡  is 0.613, which is closer to the 
optimum value of 0.5. The estimation results of the source parameters are illustrated in 
Fig. 3 (b). To show the impact of this method, the results are compared with those of the 
conventional estimation method obtained using a pre-assigned value of 𝑆𝑆𝑐𝑐𝑡𝑡 = 0.7, which 
is a commonly used value (Tominaga and Stathopoulos, 2007); these results are shown 
in Fig. 3 (a).  

In terms of point estimates, the accuracy of all three parameters show improvement, 
although on different scales, compared with the estimation performed using the pre-
assigned 𝑆𝑆𝑐𝑐𝑡𝑡 value. To better quantify the errors of the estimation results, we define two 
error indices here, namely, location error (i.e., the distance between the estimated 
location and the true source location) and strength error (i.e., the relative error of the 
estimated emission strength relative to the true strength). Thus, it is found that by 
treating 𝑆𝑆𝑐𝑐𝑡𝑡  as an unknown, the location error is reduced by 22%, decreasing from 



0.118H to 0.092H, and the strength error is reduced by 60%, changing from -16.2% to -
6.5%. Therefore, regarding 𝑆𝑆𝑐𝑐𝑡𝑡 as an extra unknown parameter improves the estimation 
accuracy. 

 
Fig. 3. Estimation results of source location (x- and y-coordinates) and strength q, (a) using pre-assigned 

𝑆𝑆𝑐𝑐𝑡𝑡 = 0.7 and (b) treating 𝑆𝑆𝑐𝑐𝑡𝑡 as an extra unknown parameter. Gray histograms depict the marginal 

posterior probability distributions. Solid lines and dashed lines denote the point estimates (posterior 

means) and true parameters, respectively, with values written in the top right corner of each panel.  

In terms of posterior probability distributions, their x-distributions are almost 
identical; although there is some small difference in the shapes of their y-distributions, 
they are still bounded in the wake region between the first and second rows (from 1H to 
2H). This is in accordance with the impact of 𝑆𝑆𝑐𝑐𝑡𝑡 on estimation results discussed in 
Section 5.1, i.e., in this specific case, 𝑆𝑆𝑐𝑐𝑡𝑡 shows little influence on the estimation of x 
and a larger influence on the estimation of y. With respect to the source strength, on 
which the value of 𝑆𝑆𝑐𝑐𝑡𝑡 shows a major impact, there is a significant difference in the 
posterior distributions. A flatter probability distribution can be obtained by treating 𝑆𝑆𝑐𝑐𝑡𝑡 
as an unknown. The 50% credible interval is almost 2 times wider. Longer tails indicate 
larger uncertainty in the estimation of strength, which is a deficiency of this method. 
This is due to the inherent characteristics of parameter estimation problems, namely, 
that the uncertainty always tends to increase when unknown variables are added into 
an inference model. To overcome this weakness, more measurement data would be 
helpful. 
 
3.4 Conclusions  
In this study, we investigated the problems concerning the turbulent Schmidt number 
𝑆𝑆𝑐𝑐𝑡𝑡 in Bayesian source term estimation. A Bayesian inference method, combined with 
the CFD method, adjoint equations and MCMC, was used to retrieve the source location 



and strength of a wind tunnel experiment with a continuous point tracer source in an 
urban-like geometry. First, the impact of 𝑆𝑆𝑐𝑐𝑡𝑡 on estimation results was analyzed. The 
following conclusions are obtained: 
1. With larger values of 𝑆𝑆𝑐𝑐𝑡𝑡, the estimated location tends to shift towards the upwind 

direction. This is because turbulent diffusion decreases with increasing 𝑆𝑆𝑐𝑐𝑡𝑡 , 
resulting in a narrower plume. Thus, the estimated location moves upwind to 
compensate for the underestimation of the plume width.  

2. Compared with the source location, strength is more sensitive to 𝑆𝑆𝑐𝑐𝑡𝑡. With larger 
values of 𝑆𝑆𝑐𝑐𝑡𝑡, we obtain smaller estimated strength values. This is also due to the 
effect of 𝑆𝑆𝑐𝑐𝑡𝑡 on turbulent diffusivity. 

3. By simply analyzing the estimation results, it is quite difficult to select the optimum 
value of 𝑆𝑆𝑐𝑐𝑡𝑡 or to determine the best estimation results.  

To remedy this, the Bayesian inference method was extended by treating 𝑆𝑆𝑐𝑐𝑡𝑡 as an extra 
unknown parameter, in addition to source location and strength. The proposed method 
was performed and the results were compared with those obtained by performing the 
existing estimation method using a pre-assigned value of 𝑆𝑆𝑐𝑐𝑡𝑡 = 0.7. This showed that: 
4. With respect to point estimates, the proposed method yields better estimation results. 

The degree of improvement is positively correlated with the sensitivity of 𝑆𝑆𝑐𝑐𝑡𝑡. In the 
demonstrated case, the change of the strength estimation is significantly larger than 
that of the location estimation. 

5. The uncertainty of the model increases when the proposed method introduces an 
extra unknown parameter. Similar to point estimates, the increment shows a positive 
correlation with the sensitivity of 𝑆𝑆𝑐𝑐𝑡𝑡. In the demonstrated case, the uncertainty of 
the strength estimation increases, while no distinct difference is seen for the location 
estimation. 
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